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Construction scheme for discrete Miura transformations 

Ravil I Yamilov 
Ufa Institute of Mathematics, Russian Academy of Sciences, 112 Chemyshevsky Street, 
Ufa, 450000, Russia 

Received 5 January 1994 

Absbaet. A direct and elementary scheme for the conslruction of Miura-type trans- 
formations and discrete diKerential equations related to them (scalar and vector) is 
presented. The scheme is illustrated using as examples the Volterra and Toda models. A 
discrete-differential analogue of the Calogero-Degasperis equation is discussed in detail. 
This example is used to show how to construct conservation laws, higher symmetries, and 
solutions for an equation obtained with the help of the scheme. 

1. Introduction 

A construction scheme for Miura-type transformations of partial differential equations 
was presented in [ I ]  (analogous problems were discussed in [2]). In [ I ]  the situation is 
discussed in which two equations (F) and (G) are reduced to a third one (T) by Miura- 
type transformations (these transformations have a special form): 

(H) 

( T )  ( G )  
(i' - 1 .  (1) 

It is shown that there exists an equation ( H )  which can be reduced to (F) and (G) by 
transformations of the same type. It is explained how to construct ( H )  and correspond- 
ing transformations. If the given equations (F), (G), (T) possess conservation laws 
and symmetries, the new equation (H) will have them too. There are many instances 
in which the scheme can be applied. 

The simplest example is the Korteweg-de Vries equation ti,=tix-+6titi,. As the 
equation (F), take the modified Korteweg-de Vries equation (MKdv equation) U,= 
U,,, - 61124, related to the Korteweg-de Vries equation by the well known Miura trans- 
formation I?=u,-J 131. The equation (G) and corresponding transformation are the 
MKdv equation and Miura transformation again, but with U in place of U. Let us impose 
the constraint ux-u2=u,-u2 and rewrite it as follows: ( U - U ) ~ = ~ ? - U ~ .  Now we can 
introduce a new dynamicd variable w = U- U, hence w, = 2- u2. The variables U and U 
can be easily expressed in terms of w, w,: 

2u = w-'w, f w 2v= w-'w,- w.  (2) 
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Differentiating w=u- v with respect to t by virtue of the MKdv equation and using (2), 
we obtain the equation ( H )  of (1) : 

where r=ln(w). It is not hard to verify that (3) is reduced to the MKdv equation by 
the Miura-type transformations (2). In other words, the formulae (2) take any solution 
of (3) into a solution of the MMV equation. Equation (3) is a particular case of 
the well known Calogero-Degasperis equation [4]. Miura-type transformation of the 
Calogero-Degasperis equation into the MKdv equation was found in [ 5 ] ,  where inte- 
grable Korteweg-de Vries-type equations were classified up to transformations of this 
kind. 

An analogous scheme for discrete differential equations will be discussed in the 
present paper. As examples we shall consider the Toda model, the Volterra equation, 
and a discrete differential analogue of equation (3). 

2. General schemes 

We consider systems of discrete differential equations (chains) of the form 

( U ~ ) , = F ( U ~ + * , ~ ~ c r - l , ~ , + t - 2 ,  . . . ,Un+m). (4) 

Here ui are vector dynamical variables, Fis a vector function, k and nz are fixed integers, 
and n is an  integer parameter. The transformations under consideration are of the form 
l i .=u(uncl,  U"). Let D be the shift operator which acts on vector functions depending 
on a finite number of dynamical variables. The shift changes only the subscripts of the 
variables 4;  for example 

D ( h ( ~ 2 ,  U, U-i ) )=h(%,  U I ,  U ) .  

We see that the chains and transformations under consideration are invariant under 
the shift. This means, in particular, that any transformation t? .=~(u .+~+ u.,,) (i is a 
fixed integer) can be expressed in the form we consider (one should denote & by &+J. 
For the chains (4) the notation u,,,=F[u,] will be used. As a rule, for brevity we shall 
not write the parameter n. For example, the well known (scalar) Volterra equation 
u . , = u . ( u . + I - u ~ - ~ )  will be ofthe form 

U , = U ( U 1  -u-l). ( 5 )  

One can write down formulae below at n=O. 
Let us enumerate the conditions sufficient for the scheme to be applied. 

Condition I .  There are two chains 

U ,  = F[u]  v,=G[v] 

which are reduced to a third one ti,= 7'[4 (see scheme (1)) by transformations of the 
form 

zI=a(u,, U) t i=b(vl ,  U). (7) 
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Condition 2. The constraint 

((8) and (9) are equivalent). Coefficients of the vectorsp, q are functionally independent. 

Condition I means, in particular, that the equality 

a.F+a,,D(F)= T[a] 
holds identically (here a,, a., are Jacobi matrices, for example a"= (aa'/au/), where 
ai, U) are coefficients of the vectors a, U). The same identity takes place for b, G. Tbere- 
fore, differentiating (8) using equations (6), we obtain ?'[a] = T[b].  This relationship is 
a consequence of (S), i.e. constraint (8) and equations (6) are consistent. 

To obtain a new chain, let us consider the system (6 ) ,  (8) (or (6) ,  (9) which is the 
same). We shall need the notion of independent dynamical variables. It should be 
remarked that in the case of (4), for example, the dynamical variables ui can be regarded 
as independent. In the case of the system (6) ,  (9), the functions 

w. =p(u. 7 0") (10) 
can be considered to be independent. The new chain is constructed in terms of the 
variables w,. The change of variables (10) is invertible, for (9) implies w=p(u, U) and 
wI =q(u, U), and by condition 2 the variables U, U are expressed via w, w,:  

u = r ( w , ,  w) U=S(M'I, w). (11) 
Differentiating w=p(u, U) with respect to f using equations (6) and (1 I), we easily 
obtain a chain in terms of w,: 

w,=H[w]  =p.(r, s)F[r]+p.(r,  s)G[s]. (12) 
If conditions 1 and 2 hold, we construct a new chain by the formula (12). New trans- 
formations are given by (1 1). 

It is important that (12) is reduced to (6) by (1 1). Let us explain why this is true. 
It follows from (9) that D(p,F+p,G)=q,F+q.G. Comparing this equality with (E), 
we find 

Note that one can obtain a chain in terms of wi ,  using the relationship w,  =q(u, U). 
However, as (13) shows, this chain will coincide with (12). The equality (13) is equiva- 
lent to 

Taking into account the independence of the dynamical variables w,, we see that the 
last equality holds identically. Thus, formulae (1  1) yield solutions of eqs. (6)  for any 
solution of eq. (12). We are led to the following result. 

Theorem. If conditions 1, 2 are valid, then equation (12) is reduced to equations (6) 
by the corresponding transformations (1 1). 



6842 R I Yamilov 

3. DBcrete-differential analogue of the CalogerwDegasperk equation 

First the scalar case will be considered, and the scheme will be illustrated using as an 
example the Volterra equation (5). We shall obtain a discrete differential analogue of 
the Calogero-Degasperis equation (3) and show how to construct local conservation 
laws, higher symmetries, and exact solutions for this equation. 

3.1. Volterra equation example 

The scalar chain ( 5 )  is called, owing to its properties, not only the Volterra equation 
but also the difference Kdv equation. It is known that there are discrete differential 
analogues of both the MKdv equation and the Miura transformation: 

U,= (2- a2)(ur - u - ~ )  (14) 

zl=(u+a)(uI -a) (15) 
[C8]. Here (15) reduces (14) to (5) for any constant a. As the chain (G) and corre- 
sponding transformation (see scheme (1) and condition I), use (14) and (15) again, 
but with II and P instead of U and a. The constraint (8) takes the form 

( u + ~ . ) ( u I  - a ) =  ( u + P ) ( v ~  - P )  (16) 
and can be expressed as follows: (VI - P ) / ( U ,  - a )  = (U+ a)/(v+ P ) .  Condition 2 holds 
if a 20 or P ZO. In accordance with the scheme, the invertible change of variables 
is defined by w = ( v - P ) / ( u - a ) .  It is convenient to carry out the additional point 
transformation Gn=(wn+ 1)/(wn- I ) :  

I= (U+ U- q ) / ( v  - U+ p )  (17) 
where p =a - P ,  q = a + 8. The function 13 satisfies a beautiful chain, being the discrete 
differential analogue of the Calogero-Degasperis equation (see (3)) : 

R(u) = (2- I)($-pZd). (1% 
Discrete Miura transformation of the chain (18), (19) into the modified Volterra equa- 
tion (14) is given by 

The chain ( I Q ,  (19) has been obtained in 191 (see also the introduction of [ lo]). In 
[9] a complete list was given of scalar chains of the form u , = f ( u l ,  U, U-]) possessing 
an infinite set of local conservation laws. The author constructed conservation laws 
using transformations similar to (20), which were found by complicated calculations. 
Unfortunately, these transformations (and also (20)) are found only in the PhD thesis 
of the author. 

3.2. Local conservation laws 
Let us discuss the didactic example (18), (19) at greater length in order to demonstrate 
that the scheme permits one, starting with an integrable chain, to construct chains 



Conslruction scheme for discrete Miura transformations 6843 

which are also integrable. In particular, if we start with a chain possessing local conser- 
vation laws, the new chain will have them as well. The local conservation law of the 
chain (4 )  is of the form ( p [ ~ ] ) ~ = ( D - l ) ( ~ [ u ] ) ,  where p ,  U are scalar functions of a 
finite number of the variables U,. It should be remarked that, in the case of the periodic 
closure u ! + ~ = u , ,  we have a constant of the motion h=C: D'(p), since h,=O. If a chain 
is reduced to (4)  by a transformation C= p[u] ,  this chain possesses the conservation 
law (p[pr[uIl),=(D- I)(dpr[41). 

Thus the Volterra equation ( 5 )  possesses conservation laws with densities 

(21) 1 2  p'I'=f h ( u )  p'2) = U p'3' = UIU + iu 
( U ( ~ ) = $ ( U + U - ~ ) ,  ~ ' ~ ' = u u - , ) .  The conserved density of (14) corresponding to p(') is 
p = ( u + a ) ( u , - a ) .  For thechain (18), (19) we have 

(!-m- V)(+ l ) (W+ d 
(U' + UI)@I +U) 

P =  

There exist simpler conserved densities of the chain (IS), (19): 

where E, 6 are arbitrary constants. 

because it admits Lax representation L,=AL-LA with 
Let us recall that the Volterra equation has an infinite set of local conservation laws 

Operators of this kind are multiplied as follows: (fm(gD") =fox(g)D"'". The func- 
tion res(L9 (namely the coefficient of Lk at Do) is conserved density. For example, 
res(L2)=ul + U - ~ P ' ~ ) ,  res(L4)=u2uI t (ut + U ) ' + U U - ~  - 4 ~ ~ ' )  (densities p ,  $ are equiva- 
lent if p - $ d m ( D - I ) ) .  Thus, the chain (18), (19) also possesses an infinite set of 
local conservation laws. 

3.3. Higher symmetries 

There exists the possibility to construct higher symmetries of the new chain. If there 
exist symmetries of the chain (F), (G) (see scheme ( I ) )  which are reduced to a symmetry 
of ( T )  by the same transformations, then the described scheme enables one to construct 
a chain which is a symmetry of the new chain (H). 

As is known, the chains ( 5 )  and (14) are Hamiltonian. This means that we can 
easily obtain their higher symmetries. In the case of the modified Volterra equation 
(14), symmetries are given by 

ur= K6p/6u (23) 

K = ( a -  az)(D- D-')($-  a') (24) 

where p is a conserved density. The formal variational derivative Sp/Su is the function 
C,a(D'p)/au. Forinstance,ifp=(uta)(u,-a), thenSp/G~=u~+u_~,andtheformu- 
lae (23), (24) give the simplest higher symmetry. In the case of the Volterra equation 
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(5), there exist two Hamiltonian operators: 

K " ) =  U ( D  - 0- l )~  (25) 

K ( 2 ) = ~ [ ~ l D 2 t ( ~ ~  + u ) D - ( u + u - I ) D - ' - u - I D - ~ ] u .  (26) 
Let p be some conserved density of (9, and q be a conserved density of (14), constructed 
with the help of the discrete Miura transformation (15). It is not hard to verify that 
the symmetry (23), (24) with p = q  is reduced by (15) to the following chain: 

u,=(K'Z't4aZK'")Sp/Su. (27) 
This is a symmetry of equation (5). The construction scheme can be applied if (27) 
does not depend on the parameter a. 

There are conserved densities of (5) p"', p"', . . . , such that 

K ( ~ ) s ~ Q / ~ ~ = K ( ~ ) s ~ ( ' +  I) K'1'6p'1'/6u= 0 (28) 
(#I, P '~ ) ,  p") are given by (21); it will be explained below how to obtain the others). 
If 

p=p'k)-4aZp(K-1)+(4a2)Zp(K-2)-, . .+(-4a 2 K - 1  ) p (I) 

then the symmetry (27) takes the form (23), (25) with p=p('''' (i.e. u,=K"'Sp'Kc" / 
Su) and does not depend on a. In particular, the symmetry (23). (24) with 

p = ( u + a ) ( u l - a ) - 2 a Z i n [ ( u t a ) ( u ~ - a ) ]  

of the chain (14) is reduced by (15) to the symmetry (23), (25) with p=p"'of ( 9 ,  and 
we can use the construction scheme to obtain the simplest higher symmetry of (IS), 
(19). Let us write it down for the chain (18) with 

R(u) =a4 t bu2+ c (29) 
(a, 6 ,  care arbitrary constants). This symmetry of (18), (29) has the form 

In this way we can construct an infinite hierarchy of higher symmetries of the chain 

Returning to the relationships (28), we denote U S ~ ' ~ / ~ U  by h". The simplest way 
to find h'" is to introduce the formal infinite series Q=h'"t h'2'A-1 t h"'d-2t. . . [Ill. 
Equations (28) are equivalent to 

(W, (19). 

u - ' ( ~ @ )  - ~ ( l ) ) ( ~ - l  Q) = 0. (30) 
Applying the operator 

( D -  l)-'[D(Q)+Q](l +D-')-' 

to (30), we can see that (30) is equivalent to 

ND(Q)+ Ql[Q+D-'(Q)l= @+c(9  (31) 
where c(k) is a &dependent constant of integration. The coefficients h'" can be explicitly 
found using (31). Setting c(A)=-A/4, h")=;, we obtain h")=u, h"'=u(ul t u + u - l ) .  
It can be proved that h"'(i22) are homogeneous polynomials, such that ~ G h ' ~ / l S u =  
(i-I)h(O. As conserved densities p'O satisfying (28) we may take the polynomials 
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(i- l)-'h(''. Note that hC2'=pC2' of (21), fhC3)-p(')  (formal variational derivatives of 
equivalent conserved densitjes coincide with each other). 

3.4. Soliton soiutions 

Let us discuss the problem of the construction of solutions. If one can construct solu- 
tions of the system (6), (8), then one can obtain solutions of the new chain (12) by 
means of formula (IO). In the case of the chain (18), (19), this system (6), (8) becomes 
one consisting of (14), (16) and the following equation: 

u,= (V2-P2)(u1 - U-]). (32) 

The constraint (16) is the Backlund transformation for the modified Volterra equation 
(14), and, therefore, it is possible to construct multi-soliton solutions of the system 

In order to make the formulae simpler, let us pass, by means ofthe point transforma- 
( 1 4 ~  ( 1 6 ~  (32). 

tion C=u+a, B=u+p, t"=-t, from (14), (16), (32) to 

u,=(2a-u)u(ul-u-l) (33) 

u,= (2p -u)u(u, -U-]) (34) 

(Za - U I ) U  = (2p - ul)u (35) 

and, by ;=U-', r=-t ,  from ( I S ) ,  (19) to (18) with 

R(u)=(t? - ] ) [ (a  + P)'t?- ( a  -/3)2]. 

It follows from the construction scheme that one can use not only the formula (IO) but 
also the following one (see (9)): w . + ~  = q(u,, 0"). Therefore there is the transformation 

(37) 

of (33)-(35) into (IS),  (36). This transformation will aUow us to construct solutions 
with special properties. First we shall write down solutions for the system of equations 

C= (U- u ) / ( u  + U) 

( 5 )  and 

L v = h  Vt=A"V (38) 

C= ul'2v/V-l (Vi=D'(V))  (39) 

(LU, A,  are given by (22)). Then we shall use the fact that the function 

satisfies (33) with 2a = I ,  and the equality (2a-Cl)C=u takes place. 
The dressing method gives the following real solutions uCo ( i =  1,2,3,. . .) of the 

Volterra equation (5) and ~ J ( ~ ( E , ,  v,),  w ' ~ ' ( E ~ ,  vi)  of (38) with u = d 0 ,  I=2cosh(g)  
(here E ~ ,  v i  are real parameters, O <  E ]  < E ~ <  E ~ < .  . .). If i= 1, then U(')= 1, 

P(E~,  ~ ~ ) = e x p [ y , ( ~ ~ ,  vl)]  

V I Y E l ,  VI) =exp[-y.(Et, VI)] (40) 

y.(s, v)=noCtsinh(2&)+ v 
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where n is the discrete parameter. Also 
1) = (u~~) l /z(u~' , ) lpe~~e~*/e(qe~,  

9('+1)(~i+ I, vi+ I )  = A(u0, e")p"(~i+ I, vi+ I )  

~ I ( ' + ' ) ( E , + ~ ,  virl)=-A(u'", f 3 " ) ) ( " ( E i + ~ ,  vi+l) 

where 

e(a=9(i)(~,, vi)+ tp(&,, vi) 

and A is the following operator: 
A ( u , q ) = u ~  1/4 U 114 (pL{29L1pD-9 /z,pI /ZD- 1). 

Now we can easily construct solutions of the system (33)-(35). For any fixed i, we take 
functions of the form 

@=c19'"( E,, V i )  + czlf/(l'( E i ,  Vi) 

Y=c39'"6;, rli)+C4lV'Y6i, V i )  

wherec~>Oareconstants,cl+c2#0,c~+c4ZO; &,qZsIW, 6i>~,-1(Gr>Oifi=l) .The 
functions 

G= (u (o) l ! z~ /~- l  ii= (utyzY/Y-l 

satisfy (33)-(35) with a =cosh(&,), P=cosh(Gi) (see (39)). In accordance with (37), 
the following formula 

(Q/Q-i -Y/Y-i)/(@/Q-i + Y / ~ - I )  

yields solutions of the chain ( IS) ,  (36). One can prove that uCq, p'O(&,, v,), @"(E,, v,) 
are positive for any nsH,  ER and do not have singularities. It is clear that the solutions 
of the chain (18), (36) also do not have singularities. They are also bounded. 

Let i=l,@=coshy,(El, v I ) , Y = e x p ~ . ( 6 ~ ,  q l )  (see(40)). Weobtain forthechain 
(18), (36) with a P=cosh(G1) the following solution: 

coshY,(&i, V I ) - E X P ( ~ I )  cOshYn-i(Si, VI) 
U" = 

coshy.(EI, vl)+exp(&) coshy.-l(st, VI)  

Here un+tanh[(+sl-61)/2] as n+&m. We are led to another not very complicated 
example if i = 2  and Q = 9 ( 2 ) ( E z ,  vz), Y=9("(62, q2).  In this case a=cosh(E2),P= 
cosh(bz), and ~ . = ( p - q ) / ( P + q )  with 

I(&, ln[sinh(s- .q)/sinh(&+ 

Now u.+tanh[(sz-&)/2] as n-&m. 
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3.5. Zero-curvature representation 

After what has been said above, it is not very surprising that the chain ( I Q ,  (29) has 
the zero-curvature representation L,= D(A)L-  LA, where 

L= (R(u))-”* ( f ( q U  d-l-ag) 

& L - a  f(qu 
A = - (  1 g ( a ) ( ~ - ~ - l )  f (a ) (a~u_, -~a-~)  

U + u - ~  f (a)@ - ak-’tnr-,) -g(a)(u - U-,) 

Cf(a))’ = a* + a c P  + b zg(a)= az-aca-2. 

Although the function f(k) is not rational, those who wish can easily obtain rational 
dependence on the spectral parameter 2 (and polynomial dependence for the matrix 
L). 

4. Other examples 

In this section we consider systems of two discrete differential equations, related to the 
Toda model. It is demonstrated, in particular, that there exist many instances in which 
the proposed approach can be applied. Also, a useful and elementary addition to the 
construction scheme is discussed. 

4. I .  Toda-model example 

There are quite a lot of cases in which we can use the construction scheme. To be 
convinced of this, let us consider a rich example related to the polynomial Toda chain 

u,=u(vI - u )  &=U-U-,. (41) 
There exist seven chains and eight transformations of the form 

u”=u“(u, U, U], U]) ii= a(u, U, U], 01) (42) 

reducing them to (41): 

U , = U ( u l  - U) 

u ’ = U u ]  i i=u+u (43) 
Ei=u]uI C = U + U l  

z = v  
9=exp(ul -U) i i = U  

U<= U ( V ]  - 2u + U-]) 
a=u, a=v1-u 

u,=exp(ul - u) + U- u 

u“=exp(ul -U) a = u - u  

i=exp(ul -U!) i i = u , - U  

U, = V ( U  - U-]) 

U, =exp(ul -U) - exp(u- U+) 
(44) 

(45) 

(46) 

(47) 

u,=u 

U, = U- U+ exp(v- U-]) 

ut= u1 - u +exp(u- v )  v,=exp(u - U) + U - U-] 
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u,=(v, -u)(u- o)1/2 

U,= (VI -u)l/2(u- 0 )  

21=u1- V I  d = ( o l - u ) ' ~ .  

U,= (U- o)1'2( 0- U-1) 

u,= (U - u)(u - U-I) IP 

d = ( u - o ) ' / z  (48) 21= V I  - u 

(49) 

The integrable discrete differential model found by Toda is equation (44). Equation 
(43) is equivalent to the Volterra equation ( 5 )  ( ( 5 )  is turned into (43) by &=uh, ii.= 

Considering transformations corresponding to (43)-(49), one can check that there 
are 14 pairs of transformations which satisfy condition 2. That is to say we have 14 
possibilities to use the scheme. For example, taking the Volterra equation (43) (together 
with the second of the corresponding transformations) and the Toda model (44), we 
obtain the following chain and transformations: 

I). 

u,= (v1 ) - I+22v  -ut= (uJ1+ v2u 

(50)+(43): 9=u-'o;' d=uu (50) 

(50)+(44): t i = - I n ( ~ l )  d =  U-'0;' + uioi. 

Equations (43)-(49) can be called chains of the first level. The scheme enables us to 
obtain chains of the fourth level (one needs four transformations of the form (42) to 
reduce such a chain to (41)). Each of the levels contains more than enough chains. So 
there exist five chains which are reduced to the Volterra equation (43) by trans- 
formations of the form (42). In this case there are eight transformations again and a 
lot of possibilities to apply the scheme. One of these five chains generalizes the modified 
Volterra equation (14): 

u,= (22 - a2)(vl - v )  Ut = ( U 2  - P * ) ( U  - &I). (51) 

Transformations reducing (51) to (43) are given by 

;=(U+ a)(ol + p )  d =  (U- a) (U-p)  

n = ( u l + a ) ( u , + p )  8= (U- a)(oI -p) .  
Using (51) and these transformations, we can construct a generalization of the discrete 
differential analogue of the Calogero-Degasperis equation (IS),  (19). 

4.2. Zeroth-order conservation l a w  

We can see that it is an interesting problem to describe all chains which are reduced to 
the polynomial Toda chain (41). The construction scheme can be very helpful in this 
connection, however, it does not enable one to obtain all chains of this kind. In particu- 
lar, we are not able to obtain such chains as those of the first level ((43)-(49)) because 
there are no transformations in this case. 

We can construct new discrete differential systems and corresponding trans- 
formations of the form (42), using not only the proposed scheme but also local conserva- 
tion laws of the zeroth order: p , = ( D - l ) ( c r ) ,  where p = p ( u ,  U) (as regards partial 
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differential equations. see [ 10, 121). For example, conserved densities of the form p(u, U) 
for the polynomial Toda chain (41) are described by the following formula: 

(52) 

where a, p, y,  6 are arbitrary constants (if p =  U’+ 2u, then U= ~ U U - ~ ) .  We can intro- 
duce new variables U:, V, as follows: UI- U = p ( u ,  U), V=r(u, U), where p and r are 
functionally independent. Formulae of the form 

p =  a(u2+2u) + p u +  y ln(u)+6 

u=u(ul-u,  V )  u = u ( U , - U ,  V )  (53) 

occur. Setting U,= U, V,=r, and using (53), we easily obtain a chain in terms of U j ,  V,, 
which is reduced to the given chain by the transformation (53). Then we can simplify 
the chain resulting by point transformations: U= U ( 0 ,  @, V =  V ( 0 ,  @. It is an easy 
matter to construct in this way (44), (49, and (48), using conserved densities (52). 

4.3. Schrcdinger-type systems 

It is worthwhile to remark that, if we construct integrable chains similar to (41) together 
with discrete transformations, we can obtain, at the same time, integrable partial differ- 
ential systems of the Schrodinger type (which were investigated and classified in [ 10, 121) 
together with transformations relating them [ 13, 141. Let us consider an example 
of how Miura-type transformations of chains generate chains of corresponding 
Schrodinger-type systems. 

There correspond the well known systems 

Ur=U,,+(2UV), v, = - v,, + (2U+ V*), (54) 

U, = U,,+ (2UV+ UZ), V,=-V,,+(2UV+ V*) ,  (55) 
to the polynomial Toda chain (41) and Volterra equation (43), respectively [15]. To 
obtain Miura transformations in this case, the solutions u., U. of (41) (or (43)) must 
satisfy the system (54) (or (55)) for any integer n.  The first of the transformations of 
(43) into (41) can be rewritten in the followingway: li.=u.u,+~=u.,+u.u., in=u.+u,. 
In the second case we have : ri, = U,+ I un+ , in = u. + u, I = -(In u. I), + u.+ I + u.+ I . We 
see that the system (55) is reduced to the dispersive water waves equation (54) by 

o= U,+ uv P= U+ v (56) 

U =  uv F= U+ V-  (In v), . (57) 

It is possible that the transformations (56) and (57) have not previously been known. 
Using results from [ 141 and discrete transformations, one can construct many other 

transformations of Schrodinger-type systems. There are many transformations of this 
kind in [ 121, however, the purpose of that paper was not to find all the transformations. 

5. Conclusions 

5.1. Open problem 

Recall that the analogue of the Calogero-Degasperis equation ( I Q ,  (19) is reduced to 
the modified Volterra equation (14) by the discrete Miura transformation (20). We 
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may try to obtain one more integrable chain. As in section 3.1, we obtain the following 
constraint : 

( 5 8 )  

The problem is now to express this constraint in the form (9) (see condition 2). On the 
fact of it, this is not so easy as in the case of (16), nevertheless, this can be done. If 
a#P,  then (58) is equivalent to 

(a -P )u lu+P(ut  -u )+a  + P  - ( a -  y)v,u+ y(ul -U) +a+ y 
U l + U  V l + U  

- 

a + P + ( a - P ) u  a+P-(a-P)ul  
=(U, + 1) 

(a  - Y)V l  - ( a  -mu1 + ( P -  Y)’ (0- 1) 
(a  - YN- (a-P)u- (P- Y) 

So we can use the scheme and construct a complicated integrable chain (which first 
appeared in [9]) and a corresponding Miura-type transformation. 

An interesting open problem is to describe relationships of the form (8), which can 
be expressed in the form (9) (remember that the vector case is considered). 

5.2. Other approaches 

As is shown in many papers of Ufa mathematicians, concerning the classification of 
integrable equations (see [ 101 for details and references), most integrable equations are 
reduced to a few simple enough equations by tramformations which can be called 
differential substitutions in the case of partial differential equations (56), (57), and 
discrete substitutions in the case of discrete differential equations (see aU the other 
transformations in this paper). This indicates the necessity for a well developed theory 
of transformations of differential equations (in particular, a theory of differential and 
discrete substitutions). There are several different approaches to this problem at present 
(we discuss here only substitutions). 

In the first place, as we know already, starting with some key integrable equation, 
one can construct other integrable equations and substitutions by the scheme presented 
in this paper and in [I]. One can also use local conservation laws of the zeroth order. 
In many cases, Backlund auto-transformations enable us to construct substitutions and 
to obtain new equations [2]. These means prove to be convenient if we start with an 
equation integrable by the inverse scattering method. One may consider that here we 
go from lower equations to upper ones (see scheme (1)). 

There are other possibilities to go in the same direction and to obtain substitutions. 
A method presented in [16] uses L A  pairs and gives formulae of the form (39) first 
of all. The well known method of the factorization of differential operators also uses 
L A  pairs and allows one to obtain good results in many cases (see [ 11 ] for references; 
see also 1171). 

If we start with some linear equation possessing a rich enough Lie algebra of classical 
symmetries (the heat equation, for instance), an approach developed in [18, 191 will be 
convenient. In order to construct integrable equations and substitutions, it uses classical 
symmetries. In this case, one goes in the opposite direction: from upper equations to 
lower ones. It is possible to move in the same direction by so-called pseudo-symmetries 
and special conservation laws [IS]. It is interesting that Backlund auto-transformations 
enable us to construct substitutions, starting from both lower and upper equations [2]. 
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There exists another approach which gives so-called symmetrical transformations 
(these are compositions of differential substitutions of a special form) [IO, 121. Symmet- 
r i d  transformations are constructed for equations possessing both a classid symmetry 
and a local conservation law of the zeroth or first order. 

It should be said that most of these papers are devoted to partial differential equa- 
tions and differential substitution. However, the schemes and methods can easily be 
used in the discrete differential case. 
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